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A B S T R A C T

Mind wandering is a state in which an individual’s attention is decoupled from the task at hand. Mind
wandering affects performance in many tasks requiring focused attention, including online learning. Previous
studies have focused primarily on investigating mind wandering in contexts which are conducive to mind
wandering, that is, for highly repetitive and monotonous tasks or during tasks with very low attentional
demands. However, mind wandering also occurs during highly engaging and demanding tasks. In this study,
we examine whether mouse tracking can be used to predict mind wandering in an engaging task involving
classical computer interfaces. Assuming that mouse trajectories towards a particular response on the screen
are continuously updated by time-dependent and temporally-dynamic cognitive processes, as a behavioral
methodology, mouse tracking can provide unique insights into attentional processes. In our experiment, a
total of 272 students completed a mouse-based operation span task, during which their thoughts were probed
and their mouse movements recorded. Naive Bayes, Linear Discriminant Analyses, K-Nearest Neighbors, Tree
Bag, and Random Forest classifiers were able to predict mind wandering with F1-scores of up to 15% above a
random-chance baseline. The results show that hand reach movements can be tracked to detect mind wandering
in a user-independent manner in online tasks, thus providing a viable alternative to self-report methods and
(neuro)physiological measures. Our finding has relevant implications for a variety of user interfaces which
require hand and finger movements for the purposes of human–computer interactions.

1. Introduction

There is an ever-going conflict between pieces of information that
compete for our critical attentional resources. While navigating the
world around us, we must allocate attentional resources to both our
external environment and to our internal thoughts and feelings (Small-
wood, 2013; Smallwood & Schooler, 2015) as we seek out meaning
from the stimuli around and within us. Indeed, an essential part of
our human interaction with the world involves the constant interplay
between externally-oriented attention and internally-oriented atten-
tion, commonly referred to as mind wandering (Mills, Herrera-Bennett,
Faber, & Christoff, 2018; Smallwood & Andrews-Hanna, 2013). Often
conceptualized as a decoupling of attention from the here and now
towards internal thoughts and feelings (Smallwood & Schooler, 2015),
mind wandering has proven to be important for planning and goal-
setting (Klinger, 2013), creating an integrated sense of identity (Small-
wood & Andrews-Hanna, 2013) and fostering creativity (Baird et al.,
2012). However, it can also be detrimental to performance in a wide
variety of contexts.
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From a population point of view, the inability to regulate adap-
tively both the frequency and content of mind wandering thoughts
under different contexts has been associated with a variety of disor-
ders (Andrews-Hanna, Smallwood, & Spreng, 2014; Watkins, 2008).
Such disorders of content tend to have negative consequences for
cognitive functioning and well-being in both clinical and non-clinical
populations. Excessive negative thoughts are characteristic of depres-
sion (Marchetti, Van de Putte, & Koster, 2014), while excessively
grandiose and positive thoughts may be characteristic of mania
(Watkins, 2008). Forms of thinking that are too focal could be indica-
tive of autism, while forms of thought that are too scattered could be
reflective of Attention Deficit Disorder (Franklin, Mooneyham, Baird,
& Schooler, 2014).

With respect to the activities during which mind wandering episodes
may occur, they seem to be particularly frequent during tasks that
require sustained attention and engage working memory (Mrazek et al.,
2012; Randall, Oswald, & Beier, 2014; Unsworth & Robison, 2016).
Individual differences in working memory have been found to predict
performance on a wide range of measures, from low-level attention
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tasks to higher level reasoning (Cowan et al., 2005). A distinction
is made between resource limited tasks – in which using focused
attentional resources is necessary for performance, versus data – limited
tasks, in which investment of attentional resources is irrelevant for
performance (Randall et al., 2014). Very easy or very difficult1, as
well as highly practiced, well learned tasks would be data-limited and
leave more room for mind wandering than resource-limited tasks do.
According to this view, individuals with higher working memory ca-
pacity would be better able to regulate their attentional resources, such
that in more demanding, complex tasks, they would mind wander less;
while in easier tasks, they would mind wander more (Randall et al.,
2014; Smallwood, 2013). As such, there is a U-shaped relationship
between mind wandering and task demands, as mind wandering occurs
more frequently in low-demand and in high demand tasks than in
moderately demanding tasks, with higher levels of working memory
being associated with a reduced likelihood to mind wander as task
demands increase. Intuitively, mind wandering is more harmful to
performance of high- relative to low-demand tasks, and more so for
individuals with lower working memory capacity.

The negative association between mind wandering and perfor-
mance, particularly on demanding tasks, warrants the need to develop
technologies that are able help individuals to down-regulate the content
and frequency of their thoughts whenever necessary (Faber, Bixler,
& D’Mello, 2017). In order to reduce the negative effects of mind
wandering, it is important to be able to identify when individuals are
mind wandering. The challenge in studying mind wandering, however,
stems from the fact that it cannot easily be induced in laboratory
settings (Dias da Silva, Rusz, & Postma-Nilsenová, 2018; McVay &
Kane, 2013). Moreover, its detection relies on self-reports, by means of
experience sampling methods such as thought probes and retrospective
measures, which are inherently subjective (Smallwood & Schooler,
2015). Compared to thought probes, retrospective measures are useful
in that they do not interrupt the natural flow of the task. However,
retrospective measures are only able to make general estimations about
the total frequency of mind wandering on a task, while thought probes
are better at pinpointing specific instances of mind wandering within
a task. Past studies show that to a certain degree, both are subject
to incorrect estimations from participants (Seli, Carriere, Levene, &
Smilek, 2013; Smallwood & Schooler, 2006). Because of this, additional
behavioral measures such as reaction times (McVay & Kane, 2009),
reading speed (Mills, D ’mello, Bosch, & Olney, 2015), fidgeting (Car-
riere, Seli, & Smilek, 2013; Seli et al., 2014), and (neuro)physiological
responses such as brain activity and eye movements (Faber et al.,
2017; Franklin, Broadway, Mrazek, Smallwood, & Schooler, 2013;
Mittner et al., 2014; Smallwood, Brown, Tipper, Giesbrecht, Franklin,
Mrazek, et al., 2011), have been explored to distinguish periods of
focused attention (FA) from periods of mind wandering (MW). These
neuro(physiological) approaches, however, interfere with the natural
performance on a primary task (Grimes & Valacich, 2015) in that they
require additional measuring instruments, which introduce a certain
level of discomfort for the participant. In this paper, we examined
mouse movement behavior as a method that could be used to detect
the occurrence of mind wandering unobtrusively.

1.1. Mouse movements as a behavioral measure of mind wandering

It has been shown that in relation to various domains, including de-
cision making, attention, and learning (Freeman, Dale, & Farmer, 2011;
Grimes & Valacich, 2015; Lins & Schöner, 2019; Papesh & Goldinger,
2012), computer mouse tracking effectively traces the evolution of
internal cognitive processes through action execution. As a natural
and practiced visuo-motor response, various populations, from young
children (Hermens, 2018) to older adults (Seelye et al., 2015) can easily

1 Such that the level of difficulty is beyond one’s ability to complete a task.

perform mouse-based tasks. In a typical mouse tracking paradigm,
alternative choices can be represented in front of a participant, and the
evolution of reach trajectories towards a target can be visualized as
a representation of how competing cognitive states are resolved over
time (Song & Nakayama, 2009). A mouse is a primary means of inter-
acting with computers in everyday tasks, ranging from writing email
to navigating a page while reading an article. As almost all computers
are equipped with mice, measuring mouse movements is affordable and
widely accessible, and can be effectively run as a background process
during mouse-based tasks.

Can computer mouse movements predict the occurrence of mind
wandering? Previous research was able to predict engagement – a
concept often contrasted with mind wandering – from mouse features in
an unsupervised manner (Arapakis, Lalmas, & Valkanas, 2014). There
is also evidence of a direct link between changes in hand movement
behavior during mind wandering. Kam et al. (2012) found increased
tracking errors during periods of mind wandering relative to periods
of focused attention in a simple visuomotor ball tracking task. They
describe such errors to be a consequence of attenuated sensory process-
ing. Alternatively, changes in hand movements during mind wandering
may be explained by embodied cognition theory, which suggests a
variety of cognitive activities are reflected in bodily states, such as
posture, arm and hand movements (Barsalou, 2008). In particular, the
situated action view of embodied cognition assumes a close coupling
of perception and action during goal achievement (Barsalou, 2008). It
posits that the way we move our body, how we are standing, or what
we are touching or holding can both provide information about and
also influence the way that we feel, think about or evaluate a situation.
Thus, from an embodied cognition perspective, bodily movements can
be viewed as extensions of cognitive and attentional processes. As such,
mind wandering can be better described as an embodied experience
which is shaped by movements.

As extensions of attentional processes, it is plausible that hand reach
movements with a computer mouse may be able to reflect episodes
of mind wandering. Research on mind wandering and attention indi-
cates that periods of off-task thought are associated with changes in
arousal (Robison & Unsworth, 2019; Unsworth & Robison, 2017), that
is, changes in physiological activation which indicates responsiveness
to sensory stimulation (Eysenck, 1982). More specifically, both high
or low levels of arousal are related to lower attentional control, more
lapses in attention, and consequently, a greater susceptibility to mind
wandering. Meanwhile moderate levels of arousal are associated with
optimal task engagement and task performance (Cohen, Aston-Jones,
& Gilzenrat, 2004; Kahneman, 1973; Lenartowicz, Simpson, & Cohen,
2013; Mittner, Hawkins, Boekel, & Forstmann, 2016; Yerkes & Dodson,
1908). Differences in the arousal associated with mind wandering and
the accompanying physiological signature likely reflect distinct stages
of the experience. For example, mind wandering may begin during an
underarousing, monotonous circumstance. As we try extricate ourselves
from this, arousal levels rise, reaching a peak when our efforts to
engage in stimulating activities fail, accompanied by feelings of restless-
ness (Danckert, Hammerschmidt, Marty-Dugas, & Smilek, 2018). In line
with this, pupillary measures suggest mind wandering to be associated
with changes in arousal states (Unsworth & Robison, 2017, 2018).

Interestingly, high arousal has been associated with decreased fine
motor control and increases in neuromotor noise during hand reach
movements (Grimes, Jenkins, & Valacich, 2013), while low arousal has
been associated with automatism (Kahneman, 1973; Morsella, Larson,
& Bargh, 2010). Considering the relationship between mind wander-
ing and arousal, and the influence of arousal on motor control, we
could expect that mind wandering episodes would be associated with
changes in motor behavior necessary to move the computer mouse.
We consider two models in order to describe changes in motor con-
trol with computer mouse movements during mind wandering: the
stochastic optimized submovement (SOS) model and the response activa-
tion model. According to the SOS model (Meyer, Abrams, Kornblum,
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Wright, & Smith, 1988, 1990) mouse movements towards a target are
described as having two parts — an initial high-velocity phase, which
although fast, tends to be imprecise, and a subsequent deceleration
phase, which is corrective in nature, where speed decreases, but accu-
racy increases (Graham & MacKenzie, 1996; Grimes & Valacich, 2015).
When a target is approached, a tradeoff in speed is necessary to increase
precision of movement, as there is limited information capacity for
motor control (Fitts, 1954). The mind attempts to minimize the total
movement by optimizing the velocity and number of submovements to-
wards the target; however, as neuromotor noise (i.e., from high arousal)
is introduced into the model, there are fewer resources available for
the intended corrective movements, leading to slower and less precise
movements (Meyer et al., 1988, 1990; van Beers, 2004).

Complementary to the SOS model, the response activation model
describes what happens to motor movements as additional alternative
targets are introduced. It proposes that motor movements represent an
aggregation of all potential movements that could arise from all poten-
tially actionable cognitions (Welsh & Elliott, 2004). When competing
cognitions are introduced, motor movements become less precise and
response times slower, reflecting disruptions in fine motor control as
necessary cognitive resources are consumed (Hick, 1952).

While the SOS model describes what happens during movements to-
wards one particular target, the response activation model also takes into
account the influence of competing cognitions (for instance, debating
whether to choose between two or more answers to a question). Both
the predictions concerning the speed–accuracy trade off and arousal
introduced by the SOS model and predictions concerning competing
cognitions introduced by the response activation model are relevant
for predicting changes in motor control during mind wandering. As
competing cognitions are introduced by mind wandering, mouse move-
ments would likely change depending on the state of mind wandering.
They could reflect an underaroused state, or alternatively, a rest-
less state. As such, consequent changes in arousal likely increase the
amount of noise and uncertainty during a task, potentially leading to
slower, less precise, more complex and more variable computer mouse
movements.

To sum up, the challenge in studying mind wandering arises both
from the over-reliance on self-reports as well as in intrusive
neuro(physiological) measures which interfere with the natural perfor-
mance of a task. As such, it is important to find objective measures for
the detecting mind wandering that corroborate self-reports and do not
interrupt the flow of a task. Used to continuously track a variety of
cognitive processes, mouse-tracking seems to be a promising candidate
for objectively detecting mind wandering.

1.2. Current study

The focus of the current study is to explore if mind wandering
during a complex cognitive task (a working memory test, i.e., an oper-
ation span task) can be detected from mouse movements. Due to their
ability to capture cognitive processes in real time, computer mouse
movements may actually provide valuable insight into the temporal
cognitive dynamics underlying mind wandering. Research has shown
that the adverse consequences of mind wandering are greater in tasks
with higher cognitive demand (e.g.working memory tasks; McVay &
Kane, 2012; Mrazek et al., 2012; Rummel & Boywitt, 2014; Smallwood
& Andrews-Hanna, 2013). During the task (Fig. 1), participants need
to shift between an unrelated processing task while updating contents
of working memory (Conway, Cowan, Bunting, Therriault, & Minkoff,
2002; Engle, Laughlin, Tuholski, & Conway, 1999; Unsworth & Engle,
2005; Unsworth, Redick, Lakey, & Young, 2010). Specifically, the evo-
lution of mouse trajectories can be traced during the processing portion
of the operation span task. Consolidating previous research on mind
wandering and arousal, as well as mouse movements and arousal, we
will explore whether various mouse movement measures can be indica-
tors of mind wandering. In this paper, we will examine how computer

mouse movement features are related to distracted thought. We will
train various classifiers to predict differences in participants’ locus of
attention. Previous mind wandering studies have distinguished between
focused attention (FA), task-unrelated thought (TUT), and task-related
interference (TRI). During task-unrelated thought, thought content is
irrelevant to the task at hand. During task-related interference, thought
content involves a preoccupation with performance on the task at
hand (Matthews et al., 1999). The latter two categories reflect different
types of self-generated thought and involve a decoupling of attention
from the external environment towards internal thoughts and feelings.
Assuming that mouse trajectories towards a particular response on the
screen are continuously updated by cognitive processes, we expect that
mind wandering will be evident in computer mouse movements during
a working memory task. Building on the SOS model, we propose mind
wandering to be a source of neuromotor noise, leading to slower and
less precise corrective mouse movements. According to the response ac-
tivation model, computer mouse movements should become slower and
more erratic as more choices are introduced into the model. Building
on this, we would expect that during mind wandering, additional in-
ternally oriented cognitions would also compete with external choices.
Changes in arousal and consequent disruptions in motor control would
lead to slower, less precise, more complex and more variable hand
reach movements.

2. Methods

2.1. Participants

In total, 274 participants, recruited from the university student
pool, 180 female, 17 to 41 years of age (𝑀 = 22.09, 𝑆𝐷 = 3.25),2
took part in this experiment in exchange for course credit. The sample
size was selected on the basis of sample sizes reported in previous
studies (Mrazek et al., 2012; Yamauchi & Xiao, 2017). Two participants
were excluded because the experimental environment crashed, leaving
272 remaining participants in our analyses. All subjects were native
Dutch speakers who could use a computer mouse. The study was
approved by the Tilburg University Ethics Committee (identification
code: REC#2017/06), and informed consent was obtained from each
participant at the beginning of the experimental session. After signing
the consent form, participants filled out a questionnaire collecting their
demographics and completed the Operation Span Task, which took on
average 20 min to complete. Standard procedure was followed for the
Operation Span (OSPAN) (see Fig. 1) task (Conway et al., 2005).

2.2. Material

The task required participants to maintain access to memory items
(letters) while completing an unrelated processing task (math equa-
tions) with an individualized response deadline (𝑀+2.5𝑆𝐷), calculated
during 15 processing-task-only items (Unsworth, Heitz, Schrock, &
Engle, 2005). This allowed each participant to set their own pace and
ensured that they did not rehearse the to-be-recalled letters by limiting
the amount of time they had to solve the math operations. Participants
viewed a compound math equation on the computer screen, and once
they had solved it, they were instructed to click on the start button. If
participants took longer than their average time + 2.5𝑆𝐷 to click on
the start button, the trial was marked as an error. On the center of the
next screen, they saw a number, as well as a TRUE and FALSE box on
the top left corner and top right corner of the screen, respectively. If
the number they saw corresponded to the correct answer to the math
equation, participants were instructed to click on the TRUE button, and
if not, on the FALSE button. A capital letter appeared for 1000 ms

2 Mean age for females = 21.60, 𝑆𝐷 = 3.26, and mean age for males = 23,
𝑆𝐷 = 3.03.
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Fig. 1. Operation span task.

after the math operation. After 3–7 compound equations–letter pairs,
all 12 letters appeared on the screen and participants were required
to identify (by clicking) the letters that were presented in the trial in
serial order. Each set length (3–7) was presented 3 times, randomly
ordered for each participant, for a total of 75 trials (15 sets). Mind
wandering was assessed by thought probes embedded throughout the
task after each set (Mrazek et al., 2012). In order to prevent participants
from devoting all their processing time to remembering the letters, they
were instructed to aim for an accuracy of at least 85% on the math
operations,3 so that letter recall would not come at the expense of
performance on the math operations. The program calculated the sum
of all correctly recalled set sizes (OSPAN score), the total number of
letters recalled in the correct position, and the total number of math
errors (Unsworth et al., 2005). At the end of the task, participants
received feedback concerning their performance.

2.3. Instrumentation

The Operation Span Task was programmed on Opensesame (Mathôt,
Schreij, & Theeuwes, 2012), version 3.1.6, using a modified version
of the script provided by Eoin Travers.4 The experiment was run in

3 In the standard operation span task, participants who do not answer at
least 85% of all math questions correctly are excluded from analysis. Although
we still instructed participants to aim to achieve at least 85% accuracy, the
exclusion criterion was irrelevant for the purposes of this study, and we thus
kept all participants for analysis.

4 https://github.com/EoinTravers/QuickstartMousetracking.

full screen mode on a P2210 Dell monitor, 22 inch (55.88 cm), with a
resolution of 1366 by 768 pixels on a Windows 7 operating system.
The desktop computer was placed on a table so that enough space
was available to move the mouse around without hitting the keyboard
or the edge of the table. Mouse settings were left at their default
values (acceleration on and medium speed). A Dell USB 3 Button
Scrollwheel wired Optical Mouse was used to record cursor coordinates
for the math verification portion of the experiment. There was enough
space available for participants to move the mouse without hitting the
keyboard or the edge of the table.

Mouse movements were recorded during the math verification part
of the task towards one of two alternatives (TRUE or FALSE, on the
uppermost right and left sides of the screen). Upon clicking on the start
button, mouse movements started to be recorded. The dimensions of the
TRUE and FALSE buttons were of 279 by 157 pixels, and dimensions
of the start button were of 80 x 80 pixels. Cursor coordinates were
recorded every 30 ms. To ensure that any effects were not due to the
direction of movement, we reversed the positions of the TRUE and
FALSE buttons for 885 (out of 272) participants.6

5 Originally 90 (out of 274), but two participants were excluded due to a
procedural error.

6 We designed our experiment according to original implementation of the
OSPAN, in which TRUE is displayed on the left of the screen and FALSE on the
right side. However, after collecting data from 184 participants, we deemed it
necessary to collect more data with the location of the FALSE button now on
the left and the location of the TRUE button on the right to ensure that any
mouse movement effects found were not due to the location of the response
buttons.

https://github.com/EoinTravers/QuickstartMousetracking
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In the instructions, participants were informed that after each set,
they would be asked a question about their thoughts during the previ-
ous set. They were also informed that it is normal for people’s minds
to wander off task or to thoughts about their performance on the task.
After each set, participants were asked, What were you thinking about
during the previous set?, and had to choose from 3 alternatives, namely,
(1) I was focused on the task, (2) I was focused on my performance on
the task, and (3) I was thinking about something unrelated to the task.
Alternative 1 denoted all instances in which participants were focused
on the task; alternative 2 denoted all instances in which participants
experienced task-related interference; and alternative 3 denoted all
instances in which participants experienced task-unrelated thought (Ro-
bison, Miller, & Unsworth, 2019; Stawarczyk, Majerus, Maj, Van der
Linden, & D’Argembeau, 2011).

2.4. Data processing

Individual raw data files were merged and read into R version
3.4.1 (R Core Team, 2013). Because of the individualized response
times during the processing part of the OSPAN task, trials in which
participants took longer than their average time to click on the start
button were discarded. If participants took longer than their average
time to complete the math response, the experiment would issue an
error message and move on to the following trial (429 trials out of
20400 trials). As the end coordinates of such trials were not com-
parable to the rest of the trials, we did not include them in our
analyses. Mouse tracking data were then imported and processed us-
ing the library ‘‘mousetrap’’ (Kieslich, Henninger, Wulff, Haslbeck, &
Schulte-Mecklenbeck, 2019) on R. Trajectories were measured from the
moment the start button was pressed to the moment either the TRUE
or FALSE response was clicked on. If participants took longer than
10 s to select an alternative, mouse coordinates were not recorded.
This happened 3 times. All trajectories aligned to a common starting
position and were remapped onto one side, and various measures were
computed for each trajectory.

2.5. Class imbalance

In order to observe the distribution of answers to the mind wan-
dering probes, we calculated the percentage of probes in which partic-
ipants responded to be focused, to be having task-related interference,
and to be having task-unrelated thought. Proportions of focused atten-
tion (FA), task-related interference (TRI) and task-unrelated thought
(TUT) were 0.69, 0.23, and 0.09, respectively (Fig. 2).

2.6. Extracting features

We extracted 27 mouse features (Kieslich & Henninger, 2017) from
the x and y-coordinates recorded for each participant. As sets after
which thought probes were placed varied from 3 (easiest) to 7 trials
(hardest) in size, we also included set size as a contextual feature in
our analyses (Mrazek et al., 2012). Descriptive statistics of features are
presented in Table 1. Features were first aggregated per participant be-
fore calculation of the mean and standard deviation. MAD refers to the
signed maximum absolute deviation connecting the direct path between
the start and end point of the trajectory (straight line) (Fig. 3). If the
MAD occurs above the direct path, it has a positive value; if it occurs
below, then a negative value. MAD time refers to the time at which
the maximum absolute deviation was first reached. MD above and MD
below refer to the maximum deviation above and below the direct
path, respectively, while MD above time and MD below time refer to the
time at which the maximum deviation above and below was reached
first, respectively. AD refers to the average deviation from the direct
path. AUC (Fig. 3) refers to the geometric area between the actual
trajectory and the direct path (where areas below the direct path have
been subtracted). x- and y-pos flips refer to the number of directional

Fig. 2. Distribution of mind wandering scores.

Fig. 3. Visual representation of trajectory measures.

changes along x- and 𝑦-axis, respectively. x and y-pos reversals refer to
the number of crossings of the x- and 𝑦-axis, respectively.

All features were aggregated per set (15 sets per participant, varying
in size from 3 to 7 trials), yielding a total of 4080 instances.

2.7. Dimensionality reduction

Pearson’s correlations (Fig. 4) between the mouse-tracking features
indicate that some features may be measuring nearly identical under-
lying constructs (e.g. MAD and MD above, 𝑟 = 0.99, vel-max time and
acc-min time, 𝑟 = 0.96, total dist and x-pos max 𝑟 = 0.90).

Therefore, PCA (Fig. 5) was used to reduce the dimensionality of the
data, removing any multicollinearity. Four components were used that
cumulatively accounted for 26%, 49%, 61%, and 68% of the variance
in the mouse-tracking data, respectively.

Analysis of the components on the basis of the pattern matrix
(Table 2) indicates that the first component (spatial) concerns the space
and path covered, indicating deviations from the optimal trajectory, the
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Table 1
Unstandardized means and standard deviations of mouse tracking features and set
size for each class (FA — focused attention, TRI — task-related interference, TUT —
task-unrelated thought).

Featuresa FA TRI TUT

Mean SD Mean SD Mean SD

x-pos max 135.30 70.29 138.36 73.08 151.79 92.36
x-pos min −531.58 20.64 −533.09 24.28 −539.14 27.67
y-pos max 655.10 14.45 655.30 16.06 654.00 16.66
y-pos min −0.44 1.23 −0.36 1.09 −0.42 1.23
MAD 280.24 112.25 282.32 112.41 300.91 141.95
MAD time 559.81 146.36 597.51 183.51 628.99 202.97
MD above 290.52 108.20 292.21 108.62 312.15 133.81
MD above time 537.05 140.07 577.84 179.27 604.97 210.59
MD below −19.90 11.48 −19.25 13.48 −22.21 16.95
MD below time 445.83 150.33 481.89 239.95 521.80 252.19
AD 82.71 40.25 83.68 41.22 88.37 46.32
AUCb x 103 109.00 39.00 111.00 42.00 117.00 51.00
x-pos flips 1.48 0.48 1.50 0.55 1.54 0.66
y-pos flips 0.90 0.45 0.92 0.52 0.97 0.84
x-pos reversals 0.84 0.27 0.84 0.31 0.89 0.41
y-pos reversals 0.06 0.11 0.06 0.14 0.07 0.17
RT 1104.96 273.81 1174.78 322.65 1224.99 412.23
initiation time 195.39 91.76 206.08 107.33 221.85 107.90
idle time 380.30 212.13 432.66 251.67 459.71 320.02
total dist 1218.71 203.69 1223.86 195.08 1267.82 260.48
vel max 6.43 1.01 6.45 1.14 6.47 1.18
vel max time 587.86 167.52 630.69 205.12 656.09 221.68
acc max 0.10 0.02 0.10 0.02 0.10 0.03
acc max time 545.63 163.04 590.49 207.60 621.96 234.80
acc min −0.10 0.02 −0.10 0.02 −0.10 0.03
acc min time 635.16 163.01 677.91 203.20 710.68 221.35
sample entropy 0.10 0.03 0.10 0.03 0.10 0.03
set size 4.82 0.35 5.33 0.89 5.46 1.08

aAll time related values are presented in milliseconds (ms), all position related values
are presented in pixels (px), area (AUC) is displayed in px2, and all speed related
variables are presented in pixels/ms.
bExact values for AUC Mean and SD for each class are displayed respectively. (FA)Mean:
109,243.80 px2, SD: 38,620.08 px2, (TRI) Mean: 110,536.80 px2, SD: 41,572.50 px2,
and (TUT) Mean: 117,172.10 px2, and SD: 50,747.45 px2.

Table 2
PCA pattern matrix with values for the highest loading component, with ultimate cutoff
point of 0.35.

Variables PC1 PC2 PC3 PC4

MAD 0.94
MD above 0.92
AD 0.92
AUC 0.88
x-pos max 0.87
total dist 0.75
sample entropy 0.70
x-pos reversals 0.65
MD below 0.48
y-pos flips 0.48
MAD time 0.92
vel max time 0.90
acc max time 0.89
acc min time 0.88
MD above time 0.88
RT 0.86
idle time 0.80
initiation time 0.61
MD below time 0.58
vel max 0.84
acc min −0.81
acc max 0.77
x-pos min −0.67
y-pos max 0.35
y-pos reversals 0.79
y-pos min −0.76
x-pos flips 0.38

Fig. 4. Correlations between mouse tracking variables.

Fig. 5. Plot of variables contributing to PCA components. Positively correlated vari-
ables point to the same direction in the plot. Negatively correlated variables point to
opposite directions in the plot.

second (time-related) consists primarily of variables that have to do
with the temporal occurrence of cursor movements, the third (speed-
related) consists of velocity and acceleration of movements, and finally,
the fourth component (y-positions) consists of primarily y-position
related features.

2.8. Training and testing

We used a leave-one-participant-out cross-validation procedure,
where eighty percent of participants were in the training/validation set,
and 20% of participants in the test set. A leave-one participant-out cross-
validation procedure is used to train classifiers in a user-independent
manner (Yatani & Truong, 2012) and has been previously applied for
predicting mind wandering (Pham & Wang, 2015). Each model was
trained on 𝑁 − 1 participants, and one participant was held out for
validation, for 𝑁 folds, where 𝑁 is the number of participants in the
training/validation set. This was then compared to a corresponding
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random chance baseline7 for all three classes (FA — focused attention,
TRI — task-related interference and TUT — task-unrelated thought)
separately.

2.9. Model building

Several studies have been able to predict mind wandering with
machine learning classification methods in a user-independent fashion
from behavioral and (neuro)physiological data. Using eye movement
features (Bixler & D’Mello, 2016), trained 20 different machine learning
algorithms and were able to predict mind wandering best using a Naive
Bayes classifier. Pham and Wang (2015) also used various classifiers
to detect mind wandering in online lectures from heart rate features
and found the k-nearest neighbor classifier to perform best. Zhang
and Kumada (2017) trained 6 machine learning algorithms and found
Linear Discriminant Analysis and AdaBoost to predict mind wandering
best using driving behavior information as features. Although various
classifiers have been used to predict mind wandering from different
behavioral and physiological features and in different contexts, there is
not yet a consensus concerning which one is best. Therefore, we trained
5 classifiers which have been previously used in predicting mind wan-
dering (NB — Naive Bayes, KNN — K-Nearest Neighbor, LDA — Linear
Discriminant Analysis, TB — Tree Bag, and RF — Random Forest) on
the recorded features in order to predict whether participants were
focused on the task at hand (FA), were having task-related interference
(TRI), or were having task-unrelated thought (TUT). We consider these
different classifiers because we have no a priori prediction about the
type of model that is best suited for this classification task. We use
both the standardized mouse tracking features (z-score standardized
after aggregating per participant) as well as PCA-reduced features as
input for different models (Zhang & Kumada, 2017).

2.10. Data preparation

Participants reported being focused on 69% of trials, to be having
task-related interference on 23% of trials and to be focused on 9% of
trials. Considering the level of demand and engagement required to
complete the operation span task, it is not surprising that participants
spent the majority of the time focused on the task. Because of this,
we observed a bias towards predictions of the majority class with all
classifiers (Table 3). In addition to the class imbalance, there was also
a considerable difference in the amount of participants who reported
having task-unrelated thought (TUT) or task-related interference (TRI).
Out of the 272 participants, only 107 responded at least once to
all three mind wandering probes. In order to remove the imbalance
in responses across participants present in the full data set, we per-
formed further analyses on the 107 participants who had variation in
responses for all 3 classes. Furthermore, we randomly undersampled
the majority class(es) to match the instances in the minority class,
leaving one observation for each class (3 per participant), for a total
of overall 321 observations (3𝑥107). We used a nested cross-validation
procedure for the balanced data, where an inner CV loop was used
for training/validation and an outer loop to compute a generalized
estimate of performance. Eighty percent of participants were in the
training/validation set (inner loop), and 20% of participants in the
test set. We performed a leave-one-participant-out cross validation on
the training/validation set (inner loop). Each model was trained on
𝑁 − 1 participants, and one participant was held out for validation,
for 𝑁 folds. Model performance was then assessed on the test data.
In order to estimate how well each model generalizes, we repeated

7 A random chance baseline was computed by randomly sampling classes
from the test set.

the cross-validation process 15 times with random8 training/validation
and test split. We then obtained an average accuracy over the 15
iterations (outer loop). This was then compared to a corresponding
random chance baseline.9

3. Results

We report the classification performance in terms of overall accu-
racy of all classes (Acc.), followed by the F1 score (balanced average
of precision and recall), Sensitivity (true positive rate, also known
as recall), Specificity (true negative rate), and the Balanced Accuracy
(representing an average between Sensitivity and Specificity) for each
class.

Results from the leave-one-participant-out cross validation procedure
on the imbalanced data (𝑁𝑡𝑜𝑡𝑎𝑙 = 4080, 𝐹𝐴 = 2805, 𝑇𝑅𝐼 = 923, 𝑇𝑈𝑇 =
352) are displayed in Table 3. When testing the models on unseen data,
we observe above chance overall accuracies for all models. As expected,
all classifiers were able to predict FA above a random chance baseline,
indicating a clear bias towards prediction of the majority class, as high
Sensitivities are accompanied by low Specificities. We also found that the
F1 and Sensitivity scores for most classifiers predicting task-unrelated
thought (TUT) and task-related interference (TRI) fall below a random
chance baseline, with Specificities above chance. Only the Naive Bayes
(NB) classifier was able to predict task-unrelated thought (TUT) above
a random chance baseline (𝐹1 = 0.14, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 0.11), while no
classifiers were able to predict task-related interference (TRI) above
chance levels. We found nearly identical predictions for models using
PCA components as features. As such, we do not display them here.

3.1. Removing class imbalance

Once removing the influence of class imbalance, we see a con-
siderable improvement in performance measures. More specifically,
results from the nested cross-validation on the matched data (𝑁 =
321) indicate that K-Nearest Neighbors (KNN) and Random Forest (RF)
were able to predict task-unrelated thought (TUT) best (𝐹1 = 0.41,
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 0.44 for KNN; 𝐹1 = 0.37, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 0.39 for RF). All
classifiers predicted focused attention (FA) above chance level (𝐹1 and
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 > 0.30). However, no classifiers were able to predict task-
related interference (TRI) well (see F1 and Sensitivity scores for TRI in
Table 4).

When using PCA components as features, all models performed
above a random chance accuracy baseline (Table 5). We also see
a particular improvement in the Balanced Accuracies, indicating an
improvement in both Sensitivity and Specificity for all classes, such that
all values were above chance (except for LDA — Linear Discriminant
Analysis when predicting TRI — task-related interference). NB — Naive
Bayes, TB — Tree Bag, and RF — Random Forest were the best clas-
sifiers, with overall accuracies (Acc.) of 0.47, 0.42, 0.40, respectively.
F1 scores (for each model per class) are displayed in Fig. 6.

The F1 scores for these top 3 classifiers (Naive Bayes, Tree Bag,
Random Forest) for each class (TUT — task-unrelated thought, TRI —
task-related interference, and focused attention) were as follows: TUT
(0.47, 0.46, 0.39), TRI (0.44, 0.39, 0.42), and FA (0.48, 0.41, 0.37),
respectively. Baseline F1 scores for task-unrelated thought, task-related
interference and focused attention were 0.32, 0.33, and 0.30, respec-
tively. Both the Linear Discriminant Analysis and K-Nearest Neighbors
classifiers predicted task-related thought and focused attention well,

8 We used random splits of the data because of the relatively few obser-
vations after removing class imbalance. Note that there was some overlap
between the test sets in each of the 15 iterations (Mean overlap of 19%
(𝑆𝐷 = 7%).

9 A random chance baseline was obtained by randomly sampling classes
from the test set. This was also averaged over 15 iterations.
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Table 3
Performance of multiple models on matched data using 27 mouse tracking features and set size for each class (task-unrelated thought
(TUT), task-related interference (TRI), and focused attention (FA); N = 4080). Above chance performance is presented in bold font.

Acc. F1 Sensitivity Specificity Balanced Acc.

TUT TRI FA TUT TRI FA TUT TRI FA TUT TRI FA

Random .54 .07 .22 .69 .07 .22 .69 .92 .78 .31 .50 .50 .50
NB .63 .14 .14 .78 .11 .10 .89 .95 .93 .19 .53 .51 .54
LDA .66 .02 .01 .79 .01 .01 .99 1.00 .99 .01 .51 .50 .50
KNN .64 .00 .14 .78 .00 .10 .94 1.00 .93 .11 .50 .51 .52
TB .64 .00 .13 .78 .00 .08 .93 1.00 .93 .08 .50 .51 .51
RF .66 .00 .01 .79 .00 .01 .99 1.00 .99 .00 .50 .50 .49

Table 4
Performance of multiple models on matched data using 27 mouse tracking measures and set size as features (N = 321). Above chance
performance is presented in bold font.

Acc F1 Sensitivity Specificity Balanced Acc.

TUT TRI FA TUT TRI FA TUT TRI FA TUT TRI FA

Random .32 .32 .33 .30 .32 .33 .30 .66 .66 .65 .49 .50 .47
NB .38 .34 .35 .42 .30 .34 .50 .78 .69 .60 .54 .52 .55
LDA .34 .33 .29 .40 .32 .28 .43 .69 .70 .63 .51 .49 .53
KNN .37 .41 .31 .39 .44 .30 .39 .66 .71 .69 .55 .50 .54
TB .34 .33 .32 .36 .32 .32 .37 .68 .64 .68 .50 .48 .53
RF .35 .37 .31 .37 .39 .29 .38 .65 .71 .68 .52 .50 .53

Table 5
Performance of multiple models on matched data using 4 PCA components and set size as features (N = 321). Above chance performance
is presented in bold font.

Acc F1 Sensitivity Specificity Balanced Acc.

TUT TRI FA TUT TRI FA TUT TRI FA TUT TRI FA

Random 0.32 .32 .33 .30 .32 .33 .30 .66 .66 .65 .49 .50 .47
NB 0.47 .47 .44 .48 .50 .41 .48 .69 .77 .73 .60 .59 .61
LDA 0.37 .40 .18 .45 .42 .14 .54 .65 .82 .58 .54 .48 .56
KNN 0.38 .39 .35 .39 .40 .33 .40 .68 .74 .65 .54 .54 .53
TB 0.42 .46 .39 .41 .47 .39 .40 .71 .71 .71 .59 .55 .56
RF 0.40 .39 .42 .37 .38 .44 .38 .74 .67 .69 .56 .56 .53

Fig. 6. Performance of different models with PCA components as predictors.

but not task-related interference. Specifically, the Linear Discriminant
Analysis classifier predicted task-related interference below chance
level, while K-Nearest Neighbors predicted task-related interference
just at chance level.

When comparing the performance of models with standardized
mouse tracking features to models with PCA components (Fig. 7), we
observe that reducing the dimensionality of the data leads to improve-
ments in F1 performance, especially for Naive Bayes (NB), Random
Forest (RF), and Tree Bag (TB).

Fig. 7. Comparison of performance of models with standardized mouse tracking
features versus with PCA components.

3.2. Importance of features

We explore the importance of features in predicting mind wandering
on the balanced data using the Random Forest algorithm, which is
suitable for selecting a large number of features with few observa-
tions (Yamauchi, 2013). Random Forest performs ensemble learning,
as 500 or more decision trees are formed by randomly selecting obser-
vations and variables. It then estimates likelihoods of the dependent
variable with the importance scores of features. We repeat this proce-
dure across the 15 training/validation sets and average the importance
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Fig. 8. Z-score standardized means of top ten features for predicting task-unrelated
thoughts.

of features across the different folds. Results from this procedure (Ta-
ble 6) indicate that the top five features pertain primarily to task
difficulty (set size), followed by vel max time, MD below time, RT, and
MD above time. Out of these top ten features, we observe that 7 pertain
to the time to reach maximum velocity, maximum (and minimum)
acceleration, and maximum deviation (both above and below). Time to
reach maximum velocity provides information about the onset of cog-
nitive processes involved in committing towards a response (Hehman,
Stolier, & Freeman, 2015). Time to reach maximum deviation reflects
the time to reach the greatest distance from the ideal trajectory and
is positively correlated with the time to reach maximum velocity and
acceleration (𝑟 = .89). Therefore, these features provide valuable
information concerning the influence of mind wandering on selection
of an alternative during the math processing part of the OSPAN task.
The remaining last 2 features (total distance and x-pos reversals) of
the top ten pertain to the space and distance covered by trajectories.
These features provide important information concerning how mind
wandering may influence the complexity of mouse movements, as
demonstrated by differences in trajectory paths.

When exploring the direction of features in predicting task-unrelated
thought (Fig. 8), we observe more x-position flips, longer time to reach
maximum deviation and maximum acceleration, longer RTs, more y-
position flips, longer time to reach maximum acceleration and velocity,
and longer initiation times during task-unrelated thoughts (see Fig. 8).
If we compare the difference in means in Fig. 8 to the means of
features in Table 1, we notice consistency between mean values for
the entire dataset and values in the downsampled data. The top mouse
tracking feature for predicting task unrelated thought, x-position flips,
were the number of times participants moved the mouse cursor along
the x-axis (Dale, Roche, Snyder, & McCall, 2008). More x-position
flips represent increased complexity of movement along the decision
axis, indicating more changes of mind. Next in importance were time
to reach maximum deviation and time to reach minimum acceleration,
indicating the time it takes to commit towards a response (Duran,
Dale, & McNamara, 2010). Greater values indicate a delay in this
commitment during task-unrelated thoughts.

4. Discussion

This study explores an objective method for inferring mind wan-
dering. This is of importance for future research using mouse tracking
methods for monitoring participant’s attention during an online task
beyond the laboratory. Such research is attractive in terms of its low
costs, scalability, and ecological validity. Importantly, our findings pro-
vide support for a dynamic and embodied view of cognition, in which
mind wandering and hand reach movements are seen as functionally
interdependent (Freeman et al., 2011). In a typical mouse-tracking
task, additional competing choice options are presented as additional
buttons on the screen — here they were internal cognitions. As such,

mouse-tracking measures that typically reflect response conflict be-
tween choice buttons (i.e. MAD and AUC) were not strongly affected by
mind wandering. Instead, we build on the response activation model to
explain how mind wandering can be a source of competing cognitions
which lead to slower, less precise and more complex mouse movements.

The importance of set size in predicting mind wandering indicates
that task difficulty plays a role in predicting task-unrelated thought.
This is supported by the context-regulation hypothesis (Smallwood &
Andrews-Hanna, 2013), for which there is ample evidence demon-
strating that more mind wandering occurs under low task demands,
and less mind wandering occurs under high task demands. Yet, once
task demands become too high, conditions facilitate mind wandering
once again (Adam & Vogel, 2017). Closely following set size, mouse
tracking features containing information about the length of the initial
phase of a trajectory as well as information regarding changes of mind
were most important in predicting mind wandering. Temporal features
such as time to reach maximum deviation and time to reach maximum
acceleration give us insight into the influence of mind wandering on
the amount of time required for making a decision for (or against)
a particular response. Knowing this, we build on the SOS model to
explain how mind wandering may actually lead to changes in arousal
and consequent disruptions in motor control, leading to a slower initial
(high-velocity) phase of a trajectory. In addition to temporal features,
features relating to the complexity of trajectories, x- and y-position flips,
are most important for predicting mind wandering. More flips along
the horizontal and vertical axes indicate that more corrective move-
ments took place during trajectories where participants were having
task-unrelated thoughts. Taken together, these findings support our
expectations in that mind wandering led to slower, more erratic, and
more complex trajectories.

Our goal in this study was to explore whether we could find objec-
tive differences between all three attentional states: focused attention,
task-related interferences, and task-unrelated thought. Although we
describe task-related interferences to be a particular type of mind
wandering, it is important to note that task-related interferences have
been often found to be an ambiguous state to interpret (both by
researchers and participants), falling somewhere in between task focus
and task-unrelated thought, but being neither here nor there (McVay
& Kane, 2009). Conceptually, it makes sense to distinguish task-related
interferences from task-unrelated thought. However, in practice, this is
still a challenge. In a study comparing how often participants attributed
task-related interference to on-task thoughts and mind-wandering, re-
spectively, they estimated about 1/3 of task-related interference to
be attributed to mind-wandering, and about 2/3 to be attributed to
on-task thoughts (Robison et al., 2019). Because of this ambiguity,
task-related interferences have been excluded from analysis in previous
research (McVay & Kane, 2009, 2012; Robison et al., 2019; Unsworth
& Mcmillan, 2012). It may also be that because of their ambiguity,
task-related interferences were most poorly predicted by our algorithms
(often below or just at chance level).

Some research demonstrates that participants have a tendency to
respond more slowly after making an error either because of a de-
pletion in cognitive resources or because of a strategic increase in
response caution (Ceccarini & Castiello, 2018). However, participants
were encouraged to respond as accurately as possible to the math
operations in this task according to their average response time, making
the amount of math errors across conditions negligible (4.03% for
focused attention, 5.69% for task-related interference, and 7.51% for
task-unrelated thought). Moreover, such post-error slowing has been
investigated primarily in speeded-RT tasks which consist of button or
key presses. In contrast, the operation span task used in this study was
mouse-based, which is by nature slower than button or key-based tasks.
As we were interested in observing the evolution of responses over time
during mind wandering, it was important that we keep all trials in our
analyses, irrespective of potential post-error slowing. As such, we found
that the most important mouse features in predicting mind wandering
involve time features related to the initial high-velocity phase of a
trajectory.
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Table 6
Importance of features.
Overall ranking of features Ranking of features per class

TUT TRI FA

set size 60.39 set size 99.16 RT 63.08 y-pos flips 45.45
vel max time 54.19 x-pos flips 68.32 vel max time 63.01 set size 44.90
MD below time 53.69 MD above time 64.82 MAD time 55.29 total dist 44.47
RT 51.52 acc min time 64.27 acc max time 52.92 MD above 43.16
MD above time 50.76 RT 55.30 acc min time 52.73 MD below time 42.49
acc max time 50.42 MD below time 54.13 MD below time 48.28 x-pos reversals 42.44
acc min time 47.81 y-pos flips 53.94 set size 48.13 MAD 41.28
MAD time 46.01 acc max time 53.78 MD above time 40.37 x-pos flips 39.22
x-pos reversals 44.09 initiation time 49.83 idle time 36.01 x-pos max 37.23
total dist 41.12 vel max time 49.31 AD 34.99 acc max time 37.19

4.1. Relation to previous research

Although this study is the first to use mouse movements to predict
mind wandering, it is not the first to attempt to predict mind wandering
during a working memory task. Recent research has used eye tracking
features and task performance in order to predict mind wandering dur-
ing a similar task — namely, during a spatial complex working memory
span task (Huijser, Taatgen, & Van Vugt, 2017). They found task
performance (working memory span score) to be the strongest predictor
of distracted thought and found a considerable drop in classification
accuracy when excluding task performance, with Accuracy falling just
above chance level, and Sensitivity dropping considerably below chance
level. In our study, task performance was also the strongest predictor
of mind wandering; however our primary interest was investigating
the predictive power of mouse movements independently of task per-
formance. Moreover, while Huijser et al. (2017) only included eye
movement features extracted from a 2 s interval before each probe
(after participants had already completed a set), we recorded mouse
movements while participants completed the processing portion of the
operation span task. As such, we extracted a much larger amount of
data during the sets preceding each thought probe, which is seemingly
able to provide insight into the continuous temporal dynamics of
attention and mind wandering during a task.

4.2. Limitations

A possible caveat in our study is the fact that our probes were
placed at the end of each set, which varied in level of difficulty (3 to 7
items per set). Participants’ answers to the probe were extrapolated to
the entire set of varying difficulty, while mouse movements were only
measured during the processing portion of the task but not during letter
recall (immediately before the probe). A possible solution would be to
embed probes during the processing portion of the task (before letter
recall). However, this would radically change the nature of the task,
because doing so would disrupt the flow of this task and consequently,
one’s ability to recall the letters in serial order. Alternatively, mouse
movements could also rather be recorded during letter recall, or during
breaks between sets, but this would lead mouse movements not to
be comparable across trials, as start and end positions would differ
considerably.

Secondly, the class imbalance both between and within participants
made this classification task a particularly difficult one. More instances
of the minority class(es) would have likely facilitated our predictions.
However, as we already collected data from 274 participants, it is
unlikely that an increase in sample size would lead to more balanced
classes. As our task was both demanding and engaging, in line with
the context-regulation hypothesis, it makes sense that under high task
demands, mind wandering would be minimal. Prior research using
the operation span task (Mrazek et al., 2012) found mind wandering
rates close to 25%. Note that in their study, thought probes were not
categorical but rather required participants to indicate to what extent
their attention was either on-task or on task-unrelated concerns using

a 5-point scale. Similarly, in visual working memory tasks, Adam and
Vogel (2017) found mind wandering rates of approximately 27%. In the
current study mind wandering rates were only 9%. This discrepancy
between this number and previous studies’ mind wandering rates may
be due to several reasons: First, the intermittent probes during our
task were retrospective, supposedly reflecting thought content during
the entire previous set. The categorical probes forced participants to
make a choice about their preceding states of mind, although they may
have neither been fully mind-wandering nor fully focused. Instead, a
continuous probe may have allowed participants to quantify the degree
to which they had been mind wandering, as demonstrated by Mrazek
et al. (2012). Second, as attentional resources were likely consumed
by the engagement demands of the task for the majority of people in
most of the sets, there were likely few resources left either for meta-
awareness of mind wandering or for mind wandering itself. Third,
it may be that providing feedback with regards to performance after
every set may have biased participants to either respond that they
were focused (Awh & Vogel, 2015) or that they were concerned with
their performance on the task.10 Finally, probing participants after
every set may have induced participants to be more alert and to focus
on their performance more intently (Seli, Cheyne, & Smilek, 2013).
In Mrazek et al. (2012)’s study, mind wandering was probed only after
25% of sets while in Adam and Vogel (2017)’s study, mind wandering
was probed only after 20% of sets. Given the low mind wandering
rates in this study, future research should replicate and extend the
ideas presented here with different tasks that likely result in higher
rates of mind wandering. In order to reduce the class imbalance while
maintaining the ecological validity of the study, recommendations for
future studies would be to increase the number of trials each individual
must complete, reduce the number of probes per participants, and
investigate the difference between continuous and categorical probes.

5. Conclusion

Taken together, our findings demonstrate that mouse movements
have information that can be used to detect mind wandering. The
fact that we had imbalanced classes made this a difficult classifica-
tion task. Not only that, we attempted to predict mind wandering
in a participant-independent manner, which makes classification even
more challenging due to individual differences in hand movements.
When accounting for class imbalance by downsampling instances of the
majority class(es) to match instances of the minority class, we were
able to predict mind wandering above chance level in a participant-
independent manner. We observed a considerable improvement in
predictions of task-unrelated thought while focused attention was pre-
dicted consistently above chance level by all classifiers. After reducing
the dimensionality of features, performance improved for all classes,
such that accuracy was above chance for all classifiers.

10 Note that in Mrazek et al. (2012)’s findings, feedback was provided, while
in Adam and Vogel (2017)’s study, no feedback was provided after each set.
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Mind wandering is an important aspect of the human condition; that
is, the ability to decouple from the present environment and represent
situations and thoughts that are unrelated to the here and now enable
planning, goal orientation, and creativity. There are, however, situa-
tions in which mind wandering is detrimental to performance and suc-
cessful navigation through some of our day-to-day activities. Therefore,
identifying cues to mind wandering may enable us to catch it before it
does any harm. The fact that we were able to trace mind wandering by
means of computer mouse movements is a further step in understanding
how cognition leaks into action. This study demonstrates that mouse
tracking features are a promising objective measure for predicting mind
wandering from hand movements in online user-interfaces.
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